# loss.backward()是求梯度的过程,可以通过手动来更新参数,而不用优化器来更新
# optimizer.step()只是使用loss.backward()得到的梯度进行更新参数
# 需要to(device) 只有model,训练集data,标签target
import torch
import torch.nn as nn # 各种层类型的实现
import torch.nn.functional as F
# 各中层函数的实现,与层类型对应,如:卷积函数、池化函数、归一化函数等等
# 是否可以用gpu
USE_CUDA = torch.cuda.is_available()
# 为了保证实验结果可以复现,我们经常会把各种random seed固定在某一个值
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
random.seed(53113)
np.random.seed(53113)
torch.manual_seed(53113)
if USE_CUDA:
torch.cuda.manual_seed(53113)
# 自定义模型类需要继承nn.Module,且你至少要重写__init__和forward两个函数
class TwoLayerNet(torch.nn.Module):
def __init__(self, D_in, H, D_out):
"""
在构造函数中,我们实例化两个nn.Linear模块并将它们指定为成员变量。
"""
super(TwoLayerNet, self).__init__()
# 初始化继承
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(H, D_out)
def forward(self, x):
"""
在forward函数中,我们接受输入数据的Tensor,我们必须返回Tensor的输出数据。
我们可以使用构造函数中定义的模块以及Tensors上的任意(可区分)操作。
"""
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# 输入和输出
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
# 创建模型
model = TwoLayerNet(D_in, H, D_out)
model = model.to(device)
# 构造我们的损失函数和优化器。
#在SGD构造函数中对model.parameters()的调用将包含作为模型成员的两个nn.Linear模块的可学习参数。
# 损失函数
loss_fn = torch.nn.MSELoss(reduction='sum')
# 优化器不用 to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
# Forward pass: 喂入数据并前向传播获取输出
y_pred = model(x)
# Compute and print loss
# 调用损失函数计算损失
loss = loss_fn(y_pred, y)
print(t, loss.item())
# Zero gradients, perform a backward pass, and update the weights.
# 清除所有优化的梯度
optimizer.zero_grad()
# 反向传播
loss.backward()
# 参数更新
optimizer.step()
#测试时不用计算梯度
#with torch.no_grad():
# 禁用梯度计算
CNN-LeNet5
import torch.nn as nn
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 4 * 4, 120) # 这里论文上写的是conv,官方教程用了线性层
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = LeNet5()
print(net)
LeNet5(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=256, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
完整CNN
定义CNN
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
#torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1)
#in_channels:输入图像通道数,手写数字图像为1,彩色图像为3
#out_channels:输出通道数,这个等于卷积核的数量
#kernel_size:卷积核大小
#stride:步长
self.conv2 = nn.Conv2d(20, 50, 5, 1)
#上个卷积网络的out_channels,就是下一个网络的in_channels,所以这里是20
#out_channels:卷积核数量50
self.fc1 = nn.Linear(4*4*50, 500)
#全连接层torch.nn.Linear(in_features, out_features)
#in_features:输入特征维度,4*4*50是自己算出来的,跟输入图像维度有关
#out_features;输出特征维度
self.fc2 = nn.Linear(500, 10)
#输出维度10,10分类
def forward(self, x):
#print(x.shape) #手写数字的输入维度,(N,1,28,28), N为batch_size
x = F.relu(self.conv1(x)) # x = (N,50,24,24)
x = F.max_pool2d(x, 2, 2) # x = (N,50,12,12)
x = F.relu(self.conv2(x)) # x = (N,50,8,8)
x = F.max_pool2d(x, 2, 2) # x = (N,50,4,4)
x = x.view(-1, 4*4*50) # x = (N,4*4*50)
x = F.relu(self.fc1(x)) # x = (N,4*4*50)*(4*4*50, 500)=(N,500)
x = self.fc2(x) # x = (N,500)*(500, 10)=(N,10)
return F.log_softmax(x, dim=1) #带log的softmax分类,每张图片返回10个概率
NLL-loss的定义
定义训练函数
def train(model, device, train_loader, optimizer, epoch, log_interval=100):
model.train() #进入训练模式
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad() #梯度归零
output = model(data) #输出的维度[N,10] 这里的data是函数的forward参数x
loss = F.nll_loss(output, target) #这里loss求的是平均数,除以了batch
#F.nll_loss(F.log_softmax(input), target) :
#单分类交叉熵损失函数,一张图片里只能有一个类别,输入input的需要softmax
#还有一种是多分类损失函数,一张图片有多个类别,输入的input需要sigmoid
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0:
print("Train Epoch: {} [{}/{} ({:0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data), #100*32
len(train_loader.dataset), #60000
100. * batch_idx / len(train_loader), #len(train_loader)=60000/32=1875
loss.item()
))
#print(len(train_loader))
定义测试函数
def test(model, device, test_loader):
model.eval() #进入测试模式
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item()
# sum up batch loss
#reduction='sum'代表batch的每个元素loss累加求和,默认是mean求平均
pred = output.argmax(dim=1, keepdim=True)
# get the index of the max log-probability
#print(target.shape) #torch.Size([32])
#print(pred.shape) #torch.Size([32, 1])
correct += pred.eq(target.view_as(pred)).sum().item()
#pred和target的维度不一样
#pred.eq()相等返回1,不相等返回0,返回的tensor维度(32,1)。
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
训练和测试
torch.manual_seed(53113)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = test_batch_size = 32
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./mnist_data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=True, **kwargs)
lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
epochs = 2
for epoch in range(1, epochs + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
save_model = True
if (save_model):
torch.save(model.state_dict(),"mnist_cnn.pt")
损失函数细节
cross_entropy输入的logits是未经过softmax层的输出。
而标签值为一个数字,而不是对应的one-hot向量。 nll_loss 输入的则是经过softmax和log后的输出
out=F.log_softmax(out,dim=1)
torch.nn.CrossEntropyLoss
将输入经过 softmax 激活函数之后,再计算其与 target 的交叉熵损失。即该方法将
nn.LogSoftmax()和 nn.NLLLoss()进行了结合
输入的target是标签,而不能是对应的one-hot向量
torch.nn.NLLLoss
loss(input, class) = -input[class]。 举个例,三分类任务,
input=[-1.233, 2.657, 0.534], 真实标签为 2(class=2),则 loss 为-0.534
torch.nn | torch.nn.functional (F) |
---|---|
CrossEntropyLoss | cross_entropy |
LogSoftmax | log_softmax |
NLLLoss | nll_loss |
x = torch.linspace(1, 10, 10) # this is x data (torch tensor)
y = torch.linspace(10, 1, 10) # this is y data (torch tensor)
torch_dataset = Data.TensorDataset(x, y) # y为target
loader = Data.DataLoader(
dataset=torch_dataset, # torch TensorDataset format
batch_size=BATCH_SIZE, # mini batch size
shuffle=True, # random shuffle for training每次训练打乱顺序
num_workers=2, # subprocesses for loading data
)