类型(Types)
Numpy |
PyTorch |
np.ndarray |
torch.Tensor |
np.float32 |
torch.float32; torch.float |
np.float64 |
torch.float64; torch.double |
np.float16 |
torch.float16; torch.half |
np.int8 |
torch.int8 |
np.uint8 |
torch.uint8 |
np.int16 |
torch.int16; torch.short |
np.int32 |
torch.int32; torch.int |
np.int64 |
torch.int64; torch.long |
构造器(Constructor)
零和一(Ones and zeros)
Numpy |
PyTorch |
np.empty((2, 3)) |
torch.empty(2, 3) |
np.empty_like(x) |
torch.empty_like(x) |
np.eye |
torch.eye |
np.identity |
torch.eye |
np.ones |
torch.ones |
np.ones_like |
torch.ones_like |
np.zeros |
torch.zeros |
np.zeros_like |
torch.zeros_like |
从已知数据构造
Numpy |
PyTorch |
np.array([[1, 2], [3, 4]]) |
torch.tensor([[1, 2], [3, 4]]) |
np.array([3.2, 4.3], dtype=np.float16)np.float16([3.2, 4.3]) |
torch.tensor([3.2, 4.3], dtype=torch.float16) |
x.copy() |
x.clone() |
np.fromfile(file) |
torch.tensor(torch.Storage(file)) |
np.frombuffer |
|
np.fromfunction |
|
np.fromiter |
|
np.fromstring |
|
np.load |
torch.load |
np.loadtxt |
|
np.concatenate |
torch.cat |
数值范围
Numpy |
PyTorch |
np.arange(10) |
torch.arange(10) |
np.arange(2, 3, 0.1) |
torch.arange(2, 3, 0.1) |
np.linspace |
torch.linspace |
np.logspace |
torch.logspace |
构造矩阵
Numpy |
PyTorch |
np.diag |
torch.diag |
np.tril |
torch.tril |
np.triu |
torch.triu |
参数
Numpy |
PyTorch |
x.shape |
x.shape |
x.strides |
x.stride() |
x.ndim |
x.dim() |
x.data |
x.data |
x.size |
x.nelement() |
x.dtype |
x.dtype |
索引
Numpy |
PyTorch |
x[0] |
x[0] |
x[:, 0] |
x[:, 0] |
x[indices] |
x[indices] |
np.take(x, indices) |
torch.take(x, torch.LongTensor(indices)) |
x[x != 0] |
x[x != 0] |
形状(Shape)变换
Numpy |
PyTorch |
x.reshape |
x.reshape; x.view |
x.resize() |
x.resize_ |
|
x.resize_as_ |
x.transpose |
x.transpose or x.permute |
x.flatten |
x.view(-1) |
x.squeeze() |
x.squeeze() |
x[:, np.newaxis]; np.expand_dims(x, 1) |
x.unsqueeze(1) |
数据选择
Numpy |
PyTorch |
np.put |
|
x.put |
x.put_ |
x = np.array([1, 2, 3])x.repeat(2) # [1, 1, 2, 2, 3, 3] |
x = torch.tensor([1, 2, 3])x.repeat(2) # [1, 2, 3, 1, 2, 3]x.repeat(2).reshape(2, -1).transpose(1, 0).reshape(-1) # [1, 1, 2, 2, 3, 3] |
np.tile(x, (3, 2)) |
x.repeat(3, 2) |
np.choose |
|
np.sort |
sorted, indices = torch.sort(x, [dim]) |
np.argsort |
sorted, indices = torch.sort(x, [dim]) |
np.nonzero |
torch.nonzero |
np.where |
torch.where |
x[::-1] |
|
数值计算
Numpy |
PyTorch |
x.min |
x.min |
x.argmin |
x.argmin |
x.max |
x.max |
x.argmax |
x.argmax |
x.clip |
x.clamp |
x.round |
x.round |
np.floor(x) |
torch.floor(x); x.floor() |
np.ceil(x) |
torch.ceil(x); x.ceil() |
x.trace |
x.trace |
x.sum |
x.sum |
x.cumsum |
x.cumsum |
x.mean |
x.mean |
x.std |
x.std |
x.prod |
x.prod |
x.cumprod |
x.cumprod |
x.all |
(x == 1).sum() == x.nelement() |
x.any |
(x == 1).sum() > 0 |
数值比较
Numpy |
PyTorch |
np.less |
x.lt |
np.less_equal |
x.le |
np.greater |
x.gt |
np.greater_equal |
x.ge |
np.equal |
x.eq |
np.not_equal |
x.ne |
pytorch与tensorflow API速查表
|方法名称 |pytroch |tensorflow |numpy|
| —————- | ——- | ——- | ——- |
|裁剪 |torch.clamp(x, min, max) |tf.clip_by_value(x, min, max) |np.clip(x, min, max)|
|取最小值| torch.min(x, dim)[0]| tf.min(x, axis)| np.min(x , axis)|
|取两个tensor的最大值| torch.max(x, y)| tf.maximum(x, y)| np.maximum(x, y)|
|取两个tensor的最小值| torch.min(x, y) |torch.minimum(x, y)| np.minmum(x, y)|
|取最大值索引| torch.max(x, dim)[1]| tf.argmax(x, axis)| np.argmax(x, axis)|
|取最小值索引| torch.min(x, dim)[1]| tf.argmin(x, axis)| np.argmin(x, axis)|
|比较(x > y)| torch.gt(x, y)| tf.greater(x, y)| np.greater(x, y)|
|比较(x < y) |torch.le(x, y)| tf.less(x, y)| np.less(x, y)|
|比较(x==y)| torch.eq(x, y)| tf.equal(x, y)| np.equal(x, y)|
|比较(x!=y) |torch.ne(x, y) |tf.not_equal(x, y)| np.not_queal(x , y)|
|取符合条件值的索引| torch.nonzero(cond)| tf.where(cond) |np.where(cond)|
|多个tensor聚合 |torch.cat([x, y], dim)| tf.concat([x,y], axis) |np.concatenate([x,y], axis)|
|堆叠成一个tensor| torch.stack([x1, x2], dim) |tf.stack([x1, x2], axis)| np.stack([x, y], axis) |
|tensor切成多个tensor| torch.split(x1, split_size_or_sections, dim)| tf.split(x1, num_or_size_splits, axis) |np.split(x1, indices_or_sections, axis) |
|-|torch.unbind(x1, dim)| tf.unstack(x1,axis)| NULL|
|随机扰乱| torch.randperm(n) 1 | tf.random_shuffle(x)| np.random.shuffle(x) 2 np.random.permutation(x ) 3 |
|前k个值| torch.topk(x, n, sorted, dim)| tf.nn.top_k(x, n, sorted)| NULL|
- 该方法只能对0~n-1自然数随机扰乱,所以先对索引随机扰乱,然后再根据扰乱后的索引取相应的数据得到扰乱后的数据
- 该方法会修改原值,没有返回值
- 该方法不会修改原值,返回扰乱后的值