- 统计参数总数量
- 参数正则化(Weight Regularization)
- 查看Pytorch网络的各层输出(feature map)、权重(weight)、偏置(bias)
- 自定义Operation(Function)
模型统计数据(Model Statistics) ————————
统计参数总数量
num_params = sum(param.numel() for param in model.parameters())
参数正则化(Weight Regularization)
以前的方法
L2/L1 Regularization
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,称作L1正则化和L2正则化,或者L1范数和L2范数。
L1 正则化和 L2 正则化可以看做是损失函数的惩罚项。所谓 “惩罚” 是指对损失函数中的某些参数做一些限制。
-
L1 正则化是指权值向量 w中各个元素的绝对值之和,通常表示为 ${ w }_1$ -
L2 正则化是指权值向量 w中各个元素的平方和然后再求平方根,通常表示为{ w }_2$
下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。
- L1 正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
- L2 正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
L2 正则化的实现方法:
reg = 1e-6
l2_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
if \'bias\' not in name:
l2_loss = l2_loss (0.5 * reg * torch.sum(torch.pow(W, 2)))
L1 正则化的实现方法:
reg = 1e-6
l1_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
if \'bias\' not in name:
l1_loss = l1_loss (reg * torch.sum(torch.abs(W)))
Orthogonal Regularization
reg = 1e-6
orth_loss = Variable(torch.FloatTensor(1), requires_grad=True)
for name, param in model.named_parameters():
if \'bias\' not in name:
param_flat = param.view(param.shape[0], -1)
sym = torch.mm(param_flat, torch.t(param_flat))
sym -= Variable(torch.eye(param_flat.shape[0]))
orth_loss = orth_loss (reg * sym.sum())
Max Norm Constraint
简单来讲就是对 w 的指直接进行限制。
def max_norm(model, max_val=3, eps=1e-8):
for name, param in model.named_parameters():
if \'bias\' not in name:
norm = param.norm(2, dim=0, keepdim=True)
desired = torch.clamp(norm, 0, max_val)
param = param * (desired / (eps norm))
L2正则
在pytorch中进行L2正则化,最直接的方式可以直接用优化器自带的weight_decay选项指定权值衰减率,相当于L2正则化中的λ
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9,weight_decay=1e-5)
lambda = torch.tensor(1.)
l2_reg = torch.tensor(0.)
for param in model.parameters():
l2_reg += torch.norm(param)
loss += lambda * l2_reg
此外,优化器还支持一种称之为Per-parameter options的操作,就是对每一个参数进行特定的指定,以满足更为细致的要求。做法也很简单,与上面不同的,我们传入的待优化变量不是一个Variable而是一个可迭代的字典,字典中必须有params的key,用于指定待优化变量,而其他的key需要匹配优化器本身的参数设置。
optim.SGD([
{'params': model.base.parameters()},
{'params': model.classifier.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.9)
weight_p, bias_p = [],[]
for name, p in model.named_parameters():
if 'bias' in name:
bias_p += [p]
else:
weight_p += [p]
# 这里的model中每个参数的名字都是系统自动命名的,只要是权值都是带有weight,偏置都带有bias,
# 因此可以通过名字判断属性,这个和tensorflow不同,tensorflow是可以用户自己定义名字的,当然也会系统自己定义。
optim.SGD([
{'params': weight_p, 'weight_decay':1e-5},
{'params': bias_p, 'weight_decay':0}
], lr=1e-2, momentum=0.9)
L1正则化
criterion= nn.CrossEntropyLoss()
classify_loss = criterion(input=out, target=batch_train_label)
lambda = torch.tensor(1.)
l1_reg = torch.tensor(0.)
for param in model.parameters():
l1_reg += torch.sum(torch.abs(param))
loss =classify_loss+ lambda * l1_reg
定义正则化类
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device='cuda'
print("-----device:{}".format(device))
print("-----Pytorch version:{}".format(torch.__version__))
class Regularization(torch.nn.Module):
def __init__(self,model,weight_decay,p=2):
'''
:param model 模型
:param weight_decay:正则化参数
:param p: 范数计算中的幂指数值,默认求2范数,
当p=0为L2正则化,p=1为L1正则化
'''
super(Regularization, self).__init__()
if weight_decay <= 0:
print("param weight_decay can not <=0")
exit(0)
self.model=model
self.weight_decay=weight_decay
self.p=p
self.weight_list=self.get_weight(model)
self.weight_info(self.weight_list)
def to(self,device):
'''
指定运行模式
:param device: cude or cpu
:return:
'''
self.device=device
super().to(device)
return self
def forward(self, model):
self.weight_list=self.get_weight(model)#获得最新的权重
reg_loss = self.regularization_loss(self.weight_list, self.weight_decay, p=self.p)
return reg_loss
def get_weight(self,model):
'''
获得模型的权重列表
:param model:
:return:
'''
weight_list = []
for name, param in model.named_parameters():
if 'weight' in name:
weight = (name, param)
weight_list.append(weight)
return weight_list
def regularization_loss(self,weight_list, weight_decay, p=2):
'''
计算张量范数
:param weight_list:
:param p: 范数计算中的幂指数值,默认求2范数
:param weight_decay:
:return:
'''
# weight_decay=Variable(torch.FloatTensor([weight_decay]).to(self.device),requires_grad=True)
# reg_loss=Variable(torch.FloatTensor([0.]).to(self.device),requires_grad=True)
# weight_decay=torch.FloatTensor([weight_decay]).to(self.device)
# reg_loss=torch.FloatTensor([0.]).to(self.device)
reg_loss=0
for name, w in weight_list:
l2_reg = torch.norm(w, p=p)
reg_loss = reg_loss + l2_reg
reg_loss=weight_decay*reg_loss
return reg_loss
def weight_info(self,weight_list):
'''
打印权重列表信息
:param weight_list:
:return:
'''
print("---------------regularization weight---------------")
for name ,w in weight_list:
print(name)
print("---------------------------------------------------")
正则化类的使用
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("-----device:{}".format(device))
print("-----Pytorch version:{}".format(torch.__version__))
weight_decay=100.0 # 正则化参数
model = my_net().to(device)
# 初始化正则化
if weight_decay>0:
reg_loss=Regularization(model, weight_decay, p=2).to(device)
else:
print("no regularization")
criterion= nn.CrossEntropyLoss().to(device) # CrossEntropyLoss=softmax+cross entropy
optimizer = optim.Adam(model.parameters(),lr=learning_rate)#不需要指定参数weight_decay
# train
batch_train_data=...
batch_train_label=...
out = model(batch_train_data)
# loss and regularization
loss = criterion(input=out, target=batch_train_label)
if weight_decay > 0:
loss = loss + reg_loss(model)
total_loss = loss.item()
# backprop
optimizer.zero_grad()#清除当前所有的累积梯度
total_loss.backward()
optimizer.step()
学习率衰减
torch.optim.lr_scheduler
根据迭代次数
当epoch每过stop_size时,学习率都变为初始学习率的gamma倍
optimizer = optim.SGD(params=model.parameters(), lr=0.05)
# lr_scheduler.StepLR()
# Assuming optimizer uses lr = 0.05 for all groups
# lr = 0.05 if epoch < 30
# lr = 0.005 if 30 <= epoch < 60
# lr = 0.0005 if 60 <= epoch < 90
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
plt.figure()
x = list(range(100))
y = []
for epoch in range(100):
scheduler.step()
lr = scheduler.get_lr()
print(epoch, scheduler.get_lr()[0])
y.append(scheduler.get_lr()[0])
根据测试指标
CLASS torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode='min', factor=0.1, patience=10, verbose=False,
threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
查看Pytorch网络的各层输出(feature map)、权重(weight)、偏置(bias)
weight and bias
# Method 1 查看Parameters的方式多样化,直接访问即可
model = alexnet(pretrained=True).to(device)
conv1_weight = model.features[0].weight
# Method 2
# 这种方式还适合你想自己参考一个预训练模型写一个网络,各层的参数不变,但网络结构上表述有所不同
# 这样你就可以把param迭代出来,赋给你的网络对应层,避免直接load不能匹配的问题!
for layer,param in model.state_dict().items(): # param is weight or bias(Tensor)
print layer,param
feature map
由于pytorch是动态网络,不存储计算数据,查看各层输出的特征图并不是很方便!分下面两种情况讨论:
1、你想查看的层是独立的,那么你在forward时用变量接收并返回即可!!
class Net(nn.Module):
def __init__(self):
self.conv1 = nn.Conv2d(1, 1, 3)
self.conv2 = nn.Conv2d(1, 1, 3)
self.conv3 = nn.Conv2d(1, 1, 3)
def forward(self, x):
out1 = F.relu(self.conv1(x))
out2 = F.relu(self.conv2(out1))
out3 = F.relu(self.conv3(out2))
return out1, out2, out3
2、你的想看的层在nn.Sequential()顺序容器中,这个麻烦些,主要有以下几种思路:
# Method 1 巧用nn.Module.children()
# 在模型实例化之后,利用nn.Module.children()删除你查看的那层的后面层
import torch
import torch.nn as nn
from torchvision import models
model = models.alexnet(pretrained=True)
# remove last fully-connected layer
new_classifier = nn.Sequential(*list(model.classifier.children())[:-1])
model.classifier = new_classifier
# Third convolutional layer
new_features = nn.Sequential(*list(model.features.children())[:5])
model.features = new_features
# Method 2 巧用hook,推荐使用这种方式,不用改变原有模型
# torch.nn.Module.register_forward_hook(hook)
# hook(module, input, output) -> None
model = models.alexnet(pretrained=True)
# 定义
def hook (module,input,output):
print output.size()
# 注册
handle = model.features[0].register_forward_hook(hook)
# 删除句柄
handle.remove()
# torch.nn.Module.register_backward_hook(hook)
# hook(module, grad_input, grad_output) -> Tensor or None
model = alexnet(pretrained=True).to(device)
outputs = []
def hook (module,input,output):
outputs.append(output)
print len(outputs)
handle = model.features[0].register_backward_hook(hook)
注:还可以通过定义一个提取特征的类,甚至是重构成各层独立相同模型将问题转化成第一种
计算模型参数数量
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
自定义Operation(Function)
class torch.autograd.Function能为微分操作定义公式并记录操作历史,在Tensor上执行的每个操作都会创建一个新的函数对象,它执行计算,并记录它发生的事件。历史记录以函数的DAG形式保留,边表示数据依赖关系(输入< - 输出)。 然后,当backward被调用时,通过调用每个Function对象的backward()方法并将返回的梯度传递给下一个Function,以拓扑顺序处理图。
一般来说,用户与函数交互的唯一方法是通过创建子类并定义新的操作。这是拓展torch.autograd的推荐方法。
创建子类的注意事项
- 子类必须重写forward(),backward()方法,且为静态方法,定义时需加@staticmethod装饰器。
- forward()必须接受一个contextctx作为第一个参数,context可用于存储可在反向传播期间检索的张量。后面可接任意个数的参数(张量或者其他类型)。
- backward()必须接受一个contextctx作为第一个参数,context可用于检索前向传播期间保存的张量。
- 其参数是forward()给定输出的梯度,数量与forward()返回值个数一致。其返回值是forward()对应输入的梯度,数量与forward()的输入个数一致。 使用class_name.apply(arg)的方式即可调用该操作
示例1:自定义ReLU激活函数
class MyReLU(torch.autograd.Function):
"""
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.
"""
@staticmethod
def forward(ctx, input):
"""
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for_backward method.
"""
ctx.save_for_backward(input)
return input.clamp(min=0)
@staticmethod
def backward(ctx, grad_output):
"""
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
"""
input, = ctx.saved_tensors
grad_input = grad_output.clone()
grad_input[input < 0] = 0
return grad_input
示例2:自定义OHEMHingeLoss损失函数
# from the https://github.com/yjxiong/action-detection
class OHEMHingeLoss(torch.autograd.Function):
"""
This class is the core implementation for the completeness loss in paper.
It compute class-wise hinge loss and performs online hard negative mining (OHEM).
"""
@staticmethod
def forward(ctx, pred, labels, is_positive, ohem_ratio, group_size):
n_sample = pred.size()[0]
assert n_sample == len(labels), "mismatch between sample size and label size"
losses = torch.zeros(n_sample)
slopes = torch.zeros(n_sample)
for i in range(n_sample):
losses[i] = max(0, 1 - is_positive * pred[i, labels[i] - 1])
slopes[i] = -is_positive if losses[i] != 0 else 0
losses = losses.view(-1, group_size).contiguous()
sorted_losses, indices = torch.sort(losses, dim=1, descending=True)
keep_num = int(group_size * ohem_ratio)
loss = torch.zeros(1).cuda()
for i in range(losses.size(0)):
loss += sorted_losses[i, :keep_num].sum()
ctx.loss_ind = indices[:, :keep_num]
ctx.labels = labels
ctx.slopes = slopes
ctx.shape = pred.size()
ctx.group_size = group_size
ctx.num_group = losses.size(0)
return loss
@staticmethod
def backward(ctx, grad_output):
labels = ctx.labels
slopes = ctx.slopes
grad_in = torch.zeros(ctx.shape)
for group in range(ctx.num_group):
for idx in ctx.loss_ind[group]:
loc = idx + group * ctx.group_size
grad_in[loc, labels[loc] - 1] = slopes[loc] * grad_output.data[0]
return torch.autograd.Variable(grad_in.cuda()), None, None, None, None